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Vorticity generated by pure capillary waves
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Capillary waves, like other surface waves on water, generate a rectified, or time-
averaged, vorticity field extending beyond the oscillatory (Stokes) layer at the surface.
This vorticity field ω is particularly interesting in relation to the parasitic capillary
waves found on the forward slopes of steep gravity waves. Longuet-Higgins (1992)
suggested that the rectified vorticity from the parasitic capillaries might contribute
significantly to the vorticity observed beneath the crest of the gravity wave. The basic
calculations by Longuet-Higgins (1992) were only of the horizontally averaged values
of ω. Here we extend his theory by calculating, for pure capillary waves, the space
variation of ω, to second order in the steepness of the capillary waves. Thus, the
vorticity, and hence velocity, fields are calculated in the oscillatory Stokes layer and
just beyond it, to the second order. Good agreement is found both with numerical
simulations and with experimental measurements.

1. Introduction
Recently there has been increased interest in the small-scale structures of wind

waves, partly because of the importance of wavelengths of order 1 cm to the remote
sensing of the sea surface but more basically because short waves are believed to
affect the large-scale transfers of heat, gases and momentum between the ocean and
the atmosphere.

The capillary waves formed on the forward face of relatively short gravity waves
have proven to be a common phenomenon occurring at the surface of wind-driven
bodies of water. Thus, the more accurate representation of such capillary waves
furthers the understanding of air–sea fluxes, such as those of momentum, gas and
mass. Indeed, the mass transfer coefficient at air–sea interaction remains the second
most uncertain parameter in the greenhouse effect in climate modelling. Moreover,
most widely accepted theories of wind-wave generation (Miles 1957; Phillips 1957)
and their recent extensions (Miles 1996 for linear waves and Sajjadi, Wakefield &
Croft 1997, Sajjadi 1998 for nonlinear waves) neglect the nonlinear effects of gravity–
capillary waves. The recent measurements of wind-generated surface waves by Klinke
(1996) indicate that very soon after the initial stages of wave generation the steepness
of gravity waves reaches the threshold necessary for the appearance of capillaries
which influence the dissipative and other dynamical properties of the surface waves.

Pure capillary waves are also important for variety of reasons:
(i) they provide a mechanism for extracting energy from the primary gravity wave

through viscous energy dissipation at the much shorter capillary lengthscale;
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(ii) they generate surface roughness at wavelengths which scatter electromagnetic
radiation thereby improving the remote sensing of the ocean surface by microwaves;

(iii) their presence or absence helps us in the study of sea slicks and sea surface
chemistry;

(iv) they provide a source of near-surface vorticity, as shown by Longuet-Higgins
(1992).

Surprisingly little information is available on these waves, due to the analytical,
numerical and experimental difficulties involved.

Longuet-Higgins (1992) was especially concerned with the near-surface vorticity
produced by capillary waves. He calculated the oscillatory component of the vorticity
to order ak, where a and k denote the amplitude and wavenumber of the capillary
waves, and also the horizontally averaged vorticity (which diffuses to greater depths)
to order (ak)2.

The aim of this paper is to extend Longuet-Higgins’ (1992) theory to take into
account the complete distribution in space of the vorticity field, to second order in
ak. Thus the vorticity and velocity fields will be calculated in the boundary layer, and
just beyond it, to the second order. Also, the horizontal mean flow will be calculated,
to the second order, as a function of the vertical coordinate or the coordinate normal
to the local mean surface.

Our analytical results will be compared with a numerical simulation of parasitic
capillary waves due to Mui & Dommermuth (1995) and with the experiments of Lin
& Perlin (1998). It should be noted that the calculations of Mui & Dommermuth
(1995) could only be performed with difficulty for gravity waves of length 5 cm or
less. However, our theoretical results are valid for gravity wavelengths beyond this
limit.

We emphasize that the ordering parameter chosen for the perturbation expansion
in this work is the wave steepness ak for the ripple and not the wave steepness of the
longer wave. Moreover, throughout this work we will assume ak � 1. The ripples,
or ‘parasitic capillary waves’, are so short that they may be treated as pure capillary
waves.

2. Second-order boundary-layer theory
We shall first recall the boundary-layer theory for viscous capillary waves, due to

Longuet-Higgins (1992). The present theory is applicable to steeper waves of order
a2k2, where ak is the wave steepness.

The starting point is the equation for the vorticity ω, namely(
ν
∂2

∂n2
− q̄ ∂

∂s

)
ω = q′sI

∂ω

∂s
− n∂q

′
sI

∂s

∂ω

∂n
, (2.1)

where (s, n) denote coordinates tangential and normal to any streamline in a steady,
two-dimensional flow, q̄ is the mean speed of a particle along the boundary, q′sI
represents the tangential component of the orbital velocity and ν is the kinematic
viscosity.

The boundary conditions imposed on (2.1) are

ω = −2κ(q̄ + q′sI ) when n = 0,

∇ω → 0 as n→∞,

 (2.2)

where κ is the curvature of the streamline.
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To solve (2.1), we seek a perturbation expansion in powers of an ordering parameter
ε which we take to be the wave steepness ak. Thus we write

ω = εω1 + ε2ω2 + · · · , (2.3)

q′sI = εqsI1 + ε2qsI2 + · · · , (2.4)

κ = εκ1 + ε2κ2 + · · · , (2.5)

Substituting (2.3)–(2.5) into (2.1) and (2.2) we obtain to O(ε)(
ν
∂2

∂n2
− q̄ ∂

∂s

)
ω1 = 0 (2.6)

and
ω1 = −2κ1q̄ when n = 0,

∂ω1

∂n
→ 0 as n→∞.

 (2.7)

By expanding κ1 as a Fourier series in s

κ1 =

∞∑
`=0

C`e
i`Ks, K = 2π/smax, (2.8)

Longuet-Higgins (1992) found the following solution for ω1†:

ω1 = −2q̄

∞∑
`=1

C`e
i`Ks−`1/2αn, (2.9)

where

α2 = iσ/ν, Re(α) > 0. (2.10)

Here σ = kc is the radian frequency and c is the phase speed.
At second order, O(ε2), Longuet-Higgins (1992) used only the averaged form of

equation (2.1), but here we shall require the full equation for ω2, which is(
ν
∂2

∂n2
− q̄ ∂

∂s

)
ω2 = qsI1

∂ω1

∂s
− n∂qsI1

∂s

∂ω1

∂n
, (2.11)

which has to be solved subject to the following boundary conditions:

ω2 = −2(κ1qsI1 + κ2q̄) when n = 0,

∂ω2

∂n
→ 0 as n→∞.

 (2.12)

Taking Laplace transform of (2.11) we obtain

dω̂2

ds
− βξ2ω̂2 = f̂(s, ξ)− h(s, n = 0), (2.13)

where ω̂2(s, ξ) and f̂(s, ξ) represent the Laplace transforms of ω2 and the right-hand
side of equation (2.12) with respect to n, respectively. In equation (2.13) β = ν/q̄ and

h(s, n = 0) = β

(
∂ω2

∂n
+ ξω2

)
n=0

. (2.14)

† Note that equation (2.9) is analogous to equation (3.11) of Fedorov & Melville (1998) for
nonlinear gravity–capillary waves.
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In order to solve equation (2.13) uniquely we must a priori determine the expression
(2.14) and the initial condition ω̂2(0), correct to second order.

3. Second order vorticity at a free surface
Longuet-Higgins (1953, 1992) showed that in any steady flow in which the tangential

stress vanishes, the vorticity at the surface is given by

ωs = −2κq. (3.1)

In what follows we shall use (3.1) to determine ω2(s, 0), (∂ω2/∂n)n=0 and ω̂2(0).
Choosing units of length and time such that the phase speed c and wavenumber

k become 1 and 2 respectively, Crapper’s (1957) solution for pure capillary waves
becomes

z = w − tanw, (3.2)

where z = x + iy and w = ϕ + iψ, in the reference frame moving to the left with
velocity −c. Note that any streamline ψ = ψ0 is a line of constant pressure and may
be chosen as the free surface. Thus a family of waves specified by the parameter

A = e−2ψ0 (3.3)

may be obtained in the range 0 < A < 0.4547, that is ∞ > ψ0 > 0.3941 (Longuet-
Higgins 1997). The maximum angle of slope of the free surface is related to A
by

αmax = 4 tan−1 A. (3.4)

Note that in the linearized theory αmax ≈ ak.
From equation (3.2) we see that

dz

dw
= 1− sec2 w = − tan2 w (3.5)

and thus

q =

∣∣∣∣dwdz
∣∣∣∣ = cotw cotw∗, (3.6)

where the superscript ∗ denotes the complex conjugate. Following Longuet-Higgins
(1988) the surface curvature κ may be expressed as

κ =
cos 2ϕ sinh 2ψ0

sin2 w sin2 w∗
. (3.7)

Hence by writing ζ = e2iϕ we obtain

κq = 4A(1− A2)
ζ(ζ2 + 1)(Aζ + 1)(A+ ζ)

(Aζ − 1)3n(A− ζ)3

= 4A(1− A2)F(θ), (3.8)

where for convenience we have set θ = 2ϕ.
We now express F(θ) as a Fourier series

F(θ) = Re

∞∑
n=0

ane
−inθ, (3.9)
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where the Fourier coefficients an are given by

an =
1

π

∫ 2π

0

F(θ)einθ dθ. (3.10)

Substituting ζ = eiθ equation (3.10) becomes

an =
1

πi

∮
|ζ|=1

(ζ2 + 1)(A+ ζ)(Aζ + 1)

(A− ζ)3(Aζ − 1)3
ζn dζ. (3.11)

Since |A| < 1 the integrand has just one pole within the unit circle, namely at ζ = A.
Upon taking 2πi times the residue at this point (found by letting ζ = A + ε in the
integrand, expanding in powers of ε, and taking 2πi times the coefficient of ε−1) we
obtain

a1 = 2[1 + 25A2 + O(A3)], a2 = 2[4A+ O(A3)], a3 = 2[9A2 + O(A3)], (3.12)

etc. Hence

F(ϕ) = 2[(1 + 25A2) cos 2ϕ+ 4A cos 4ϕ+ 9A2 cos 8ϕ] + O(A3). (3.13)

We shall now use (3.13) to construct a Fourier series representation of κq in terms
of s, namely the tangential coordinate to the streamline. Using (3.6) it may be shown
that

q =
(1 + Aζ)(1 + Aζ−1)

(1− Aζ)(1− Aζ−1)
(3.14)

and since dϕ/ds = q, upon expressing ϕ in terms of ζ we may write

s =
1

2i

∮
|ζ|=1

(1− Aζ)(1− Aζ−1)

(1 + Aζ)(1 + Aζ−1)

dζ

ζ
. (3.15)

The integrand has simple poles at the origin and at ζ = A within the unit circle.
Upon taking 2πi times the sum of residue we obtain

s =
π(1 + 3A2)

1− A2
. (3.16)

We next need to express s in the half-range Fourier sine series

s = D0ϕ+

∞∑
k=0

bk sin kϕ, (3.17)

where D0 = 1 + O(A2) and the Fourier coefficients bk are given by

bk =
2

π

∫ π

0

(s− ϕ) sin kϕ dϕ. (3.18)

Performing the integration and substituting the coefficients bk into (3.17) we obtain
the following Fourier representation of s in terms of ϕ:

s = D0ϕ+ 4

(
1 + 3A2

1− A2

) ∞∑
k=0

sin[(2k + 1)ϕ]

2k + 1

+2D0

∞∑
k=0

cos(2k + 1)π

(2k + 1)2
sin[(2k + 1)ϕ] (3.19)
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Finally we express κq in the following form:

κq =

∞∑
m=0

cmeims, (3.20)

where

cm =
2

π

∫ π

0

F(ϕ)e−ims ds. (3.21)

Now substituting the expression for s from equation (3.19), after expanding the
fraction (1 + 3A2)(1 − A2)−1 as a binomial series in A2, together with the expression
for F(ϕ) from (3.13) into (3.21), performing the integration and substituting the result
for cm into (3.20) we obtain

κq =
2D0

π

∞∑
m=0

m(αm + βmA+ γmA
2)eimπs + O(A3), (3.22)

where

αm = (10.12mπ+ 19.63i) + (1.65mπ− 7.99i)D0 − 2.73mπD2
0 ,

βm = (40.92mπ+ 76.18i) + (20.95mπ− 14.05i)D0 − 7.28mπD2
0 ,

γm = (294.34mπ+ 592.2i) + (88.87mπ− 204.39i)D0 − 76.62mπD2
0 .

Hence the vorticity at the surface to the second order is

ω2s = −4D0

π

∞∑
m=0

m(αm + βmA+ γmA
2)eimπs + O(A3). (3.23)

4. Second-order vorticity in the boundary layer
Before solving equation (2.13), in the light of the expression for the vorticity at the

free surface and the solution for ω1, equation (2.9), we make the assumption that

ω2(0, n) = −4D0

π

∞∑
`=0

`γ` exp(−`1/2αn) (4.1)

correct to second order. This assumption can be justified due to periodicity. The
Laplace transform of equation (4.1), namely

ω̂2(0) = −4D0

π

∞∑
`=0

`γ`

`1/2α+ ξ
, (4.2)

will serve as an initial condition for the differential equation (2.13). Note that (4.1)
also implies that (∂ω2/∂n)n=0 = 0.

Expressing qsI1 as a Fourier series in s

qsI1 =

∞∑
`=1

B`e
iK`s, (4.3)

substituting it together with the solution for ω1 from (2.9) in the expression for f(s, n)
and taking its Laplace transform we obtain

f̂(s, ξ) = 2iK

∞∑
`=1

∞∑
m=1

B`Cmei(`+m)Ks

{
α`m1/2

(αm1/2 + ξ)2
+

m

αm1/2 + ξ

}
, (4.4)
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Now substituting the expression for ω2s ≡ ω2(s, 0) from (3.23) into (2.14) and
subtracting the result from (4.4), equation (2.13) becomes

dω̂2

ds
− βξ2ω̂2 = 2Ki

∞∑
`=1

∞∑
m=1

B`Cmei(`+m)Ks

{
α`m1/2

(αm1/2 + ξ)2
+

m

αm1/2 + ξ

}

+
4D0

π
βξ

∞∑
`=0

`γ`e
i`πs. (4.5)

Solving equation (4.5) using integrating factor we obtain

ω̂2(s) = 2

∞∑
`=1

∞∑
m=1

B`Cm

{
ei(`+m)Ks − 1

`+ m

}{
α`m1/2

(αm1/2 + ξ)2
+

m

αm1/2 + ξ

}

−4iD0

π2

∞∑
`=0

{
βξ(ei`πs − 1)− iπ`γ`

`1/2α+ ξ

}
. (4.6)

Hence ω2(s, n) can be obtained using the complex inversion formula

ω2 =
1

πi

∞∑
`=1

∞∑
m=1

B`Cm

{
ei(`+m)Ks − 1

`+ m

}∫ $+i∞

$−i∞

{
α`m1/2

(αm1/2 + ξ)2
+

m

αm1/2 + ξ

}

×eiξn dξ − 2D0

π3

∞∑
`=0

∫ $+i∞

$−i∞

{
βξ(ei`πs − 1)− iπ`γ`

`1/2α+ ξ

}
eiξn dξ. (4.7)

The first and the third integrals in (4.7) are zero. However, the second and the fourth
integrals have a simple pole at ξ = −αm1/2 and ξ = −α`1/2, respectively. Calculating
the residue at these poles we obtain the following solution for the second-order
vorticity:

ω2(s, n) =
1

πi

∞∑
`=1

∞∑
m=1

mB`Cm

{
ei(`+m)Ks − 1

`+ m

}
e−iαm1/2n − 4D0

π

∞∑
`=0

`γ`e
−iα`1/2n.

(4.8)

5. The total vorticity
Following Longuet-Higgins (1992) the total vorticity ω is decomposed as

ω(s, n, t) = ω̄(n, t) + ω̃(s, n), (5.1)

where ω̄ and ω̃ denote the mean and the periodic components of the vorticity,
respectively, and

ω̃(s, n) = εω1(s, n) + ε2ω2(s, n) + · · · .
Longuet-Higgins (1992) argued that unlike the periodic component, the mean

vorticity diffuses into the interior of the fluid on a longer time scale than the wave
period, according to the diffusion equation

∂ω̄

∂t
= ν

∂2ω̄

∂n2
. (5.2)

Note that when n becomes comparable with k−1, we may replace n with z, where z
is the mean depth of a particle below the mean surface level. Now if the motion is
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16
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–8

8

Vorticity
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Figure 1. Part of the subsurface vorticity field computed numerically by Mui & Dommermuth
(1995; their figure 8) for a 5 cm gravity wave. The horizontal distance shown is 2.98 cm. The free
surface is plotted with the same vertical and horizontal scale, so that the surface slope is represented
correctly. However for the flow beneath the surface, the vertical scale has been dilated; the total
vertical extent is only 1 mm.

started at t = 0, on these time and length scales, the solution of (5.2) is

ω̄ =
2ω̄∞√
π

∫ ∞
Z

e−λ
2

dλ, (5.3)

where Z = z/2
√
νt and ω̄∞ = −2(ak)2σ.

The horizontal velocity ū associated with the mean vorticity is given by

ū =

∫ ∞
z

ω̄(z, t) dz. (5.4)

Substituting (5.3) into (5.4) we see that

ū = 4

√
νt

π
ω̄∞

[
e−Z2

2
− Z

∫ ∞
Z

e−λ
2

dλ

]
. (5.5)

At the mean surface level z = 0 equation (5.5) reduces to

ū0 = −2

√
νt

π
ω̄∞ (5.6)

which may be alternatively cast in the form

ū0 = −2N1/2δω̄∞, (5.7)

where N = σt/2π is the number of wave cycles after starting the motion and

δ =
√

2ν/σ is the boundary-layer thickness.
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ψ0 λ (cm) A ak αmax 2κ1q̄ ωmin (s−1) ωmax (s−1) DN

1.0138 0.446 0.1317 0.5266 0.5236 −479 −483 92 0.68
1.0670 0.402 0.1184 0.4734 0.4712 −503 −508 119.16 0.62
1.2710 0.357 7.8701× 10−2 0.3148 0.3142 −400 −404 85.7 0.65
1.4342 0.335 5.6784× 10−2 0.2271 0.2269 −317 −319.98 80 0.6

Table 1. Summary of theoretical results

6. Results
We shall now compare our theoretical results with the numerical calculation by

Mui & Dommermuth (1995) of the vorticity and velocity fields in a gravity wave of
length 5 cm. Starting with a pure gravity wave of steepness 0.2827 they first solved
the inviscid equations and boundary conditions, and found as expected that parasitic
capillary waves (ripples) quickly developed on the forward face. At time t = 4.5 they
switched to the full Navier–Stokes equations. The computed vorticity field at time
t = 4.8416, when the flow appeared almost steady, is shown in their figure 8, a part
of which is shown enlarged in figure 1. The free surface is drawn to scale but for the
subsurface flow the vertical scale is enlarged; the vertical distance shown corresponds
to only 1 mm in reality. The gravity wave travels from right to left. There are four
distinct wave troughs in the train of ripples ahead of the main crest. The crest-to-crest
wavelengths λ and the mean steepnesses ak of these ripples are shown in table 1. Note
that the minimum and the maximum values of vorticities, quoted in table 1, refer to
the total vorticity, i.e. ω = ω̄ + εω1 + ε2ω2.

Since the ripples are essentially stationary relative to the crest of the gravity wave,
they can be regarded as travelling to the right, in a frame moving with the phase
speed of the gravity wave. We see that just ahead of each wave trough there is a
plume of positive vorticity extending downwards at an angle for half a wavelength or
more. Likewise, in the crest of each ripple the vorticity is negative.

For comparison we show in figures 2(a) to 2(d ) our theoretical calculations of
the vorticity field for four capillary waves having the same values of λ and ak as
in table 1. Qualitatively the contours of vorticity are very similar in each case, with
plumes of positive vorticity extending downwards beneath the wave troughs. Quanti-
tatively, the minimum vorticity according to our theory is −483 s−1 compared to the
value −224 s−1 in the numerical calculation of Mui & Dommermuth. The maximum
vorticity according to our theory is 92 s−1 compared to Mui & Dommermuth’s 210 s−1.
Note that their values of vorticity are scaled with the factor

√
g/L, where g is the

acceleration due to gravity, and L = 5 cm is the total length of the ripples.
We can also make a comparison between our theory and the experimental results

of Lin & Perlin (1998), who used particle image velocimetry to measure the vorticity
generated by ripples from a gravity–capillary wave of length 5 cm and steepness
0.16. In figure 3 we have sketched the contours of vorticity from figure 5(a) of the
review paper by Perlin & Schultz (2000). Judging from the colour scheme of their
plot we estimate their maximum and minimum vorticities to be about 140 s−1 and
−210 s−1 respectively. For comparison we show in figure 4 our theoretical calculation
of the vorticity contours beneath a pure capillary wave of length 5 mm and steepness
ak = 0.1 (for this calculation ψ0 = 1.84). The calculated maximum and minimum
vorticities are 21.5 s−1 and −81 s−1 respectively, in fair agreement with the measured
values.
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x
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x
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x
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x
= 0

(c) xmin

xmax

x
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x
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x
=

0

x
= 0

(d)

Figure 2. The total vorticity (ω = ω̄ + εω1 + ε2ω2) contours at t = 4.84 s for a wave of (a) length
λ = 0.446 cm and steepness ak = 0.5266, (b) λ = 0.402 cm and ak = 0.4734, (c) λ = 0.357 cm and
ak = 0.3148, (d ) λ = 0.335 cm and ak = 0.2271. The wave is travelling from left to right. The vertical
coordinate is enlarged as in figure 1; the total depth shown is 0.5 mm.

xminxmax

Figure 3. The vorticity distribution determined by Lin & Perlin (1998)
(re-traced from part of figure 5(a) in Perlin & Schultz 2000).

In table 1 we also have also compared our numerical calculations with the first-
order vorticity, given by (2.7). To the first order, we assume the surface profile is given
by y = a cos kx. Now taking κ1 = d2y/dx2, approximating q̄ with c = σ/k and setting
kx = π we obtain

ωmin = 2κ1q̄ = −2ak2c. (6.1)

As can be seen from table 1 the present numerical calculations of the minimum
vorticity agree well with those calculated by (6.1). Also tabulated in table 1 is the
measure of the degree of nonlinarity DN given by

DN =
|ωmin| − |ωmax|
|ωmin|+ |ωmax| .

From their figure 1 we estimate DN in the calculations of Mui & Dommermuth to
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xmin xmax

x
=

0

x
=

0

x
=

0

x
=

0

Figure 4. The caption is the same as figure 2 except λ = 0.5 cm and ak = 0.1.

be about 0.72. From our present calculations we observe that DN lies in the range
0.58 6 DN 6 0.68, again in fair agreement with them.

Lastly we note that Lin & Rockwell (1995) have used particle image velocimetry
to measure the vorticity field in waves forced by a subsurface aerofoil. At certain
Froude numbers (particularly Fr ≈ 0.43) they observe short waves of length 2 to
5 cm wavelength riding ahead of the gravity-wave crest. These are too long to be
pure capillary ripples, but may be ‘vortex waves’ (see Longuet-Higgins 1994). Figure 4
of Lin & Rockwell (1995) shows that these ‘Type 2’ waves have regions of strong
vorticity beneath the wave troughs but the distance of the vortices below the surface
is much greater than in the ‘Type 1’ waves treated in the present paper.

7. Conclusions and discussion
We have extended the Longuet-Higgins (1992) averaged theory by calculating, for

pure capillary waves, the space variation of the vorticity, to second order in the
steepness of the capillary waves. Thus, the vorticity and velocity fields are calculated
in the oscillatory boundary layer, and just beyond it, to the second order. Also, the
horizontal mean flow and the vertical distribution of flow are calculated as a function
of horizontal and vertical coordinates.

We have shown that regions of high vorticity are located near the troughs of the
capillary waves where the vorticity induces strong surface currents. The theoretical
results presented here agree very well, both qualitatively and quantitatively, with the
experimental data of Lin & Perlin (1998) for the ripples on a 5 cm gravity wave.
Our results are also in close agreement with the numerical simulations of Mui &
Dommermuth (1995). However, it should be noted that the Mui & Dommermuth
(1995) calculations could only be performed with difficulty for gravity waves of length
not exceeding 5 cm. Their calculation did not or perhaps could not show any flow
separation at the leading edge of the train of ripples, and hence the ripples did not
contribute to the vorticity in the crest of the gravity wave. However, for longer gravity
waves, such as are shown by Ebuchi, Kawamura & Toba (1987), the ripples may be
steeper and flow separation may occur. Note that for longer gravity waves the ripples
are shorter, and our calculations may still apply.
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